
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2007-03-05

Stylized Hatching for 3D Animation
Trent Fielding Crow
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Crow, Trent Fielding, "Stylized Hatching for 3D Animation" (2007). All Theses and Dissertations. 1046.
https://scholarsarchive.byu.edu/etd/1046

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/1046?utm_source=scholarsarchive.byu.edu%2Fetd%2F1046&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

STYLIZED HATCHING FOR 3D ANIMATION

by

Trent F. Crow

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

April 2007

www.manaraa.com

Copyright c© 2007 Trent F. Crow

All Rights Reserved

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Trent F. Crow

This thesis has been read by each member of the following graduate committee and by

majority vote has been found to be satisfactory.

Date Parris K. Egbert, Chair

Date R. Brent Adams

Date Daniel Zappala

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Trent F. Crow

in its final form and have found that (1) its format, citations, and bibliographical style are

consistent and acceptable and fulfill university and department style requirements; (2) its

illustrative materials including figures, tables, and charts are in place; and (3) the final

manuscript is satisfactory to the graduate committee and is ready for submission to the

university library.

Date Parris K. Egbert

Chair, Graduate Committee

Accepted for the

Department Parris K. Egbert

Graduate Coordinator

Accepted for the

College Thomas W. Sederberg

Associate Dean, College of Physical and Mathematical

Sciences

www.manaraa.com

ABSTRACT

STYLIZED HATCHING FOR 3D ANIMATION

Trent F. Crow

Department of Computer Science

Master of Science

Much research has been done in creating non-photorealistic renderings of objects

that mimic the look of hand-made drawings by traditional artists. This thesis extends work

in this area by presenting an NPR hatching method that can be applied to 3D animated

films to help them feel more hand drawn. In contrast to most other NPR methods, this

method preserves the 3D lighting and effects of the film that make it interesting to watch.

This process includes a procedural algorithm to create a hatching pattern that can be easily

integrated into any film’s pipeline that uses Renderman. In addition, we create a set of

controls to adjust the hatching that are easy to use and allow our style to be applied to

many different objects in many shots of a film in an efficient manner. To show the success

of our method, we will discuss the implementation and results of applying it to an actual

3D animated short film.

www.manaraa.com

ACKNOWLEDGMENTS

I thank my committee for their time and effort in helping me in preparing this thesis

document. They have selflessly given many hours towards helping me to be successful. I

thank my fellow classmates and lab colleagues for many questions answered, much advice

given, and support rendered in my behalf. I also give thanks to my wife, Eve, for being

patient with me and having confidence in my abilities.

www.manaraa.com

Contents

1 Introduction 1

2 Paper to be Submitted 3

2.1 Introduction . 3

2.2 Related Work . 6

2.3 System Design . 12

2.3.1 Hatching in the Pipeline . 16

2.4 Procedural Algorithm . 18

2.4.1 Controlled-density Hatching . 18

2.4.2 Stylized Hatching . 24

2.5 Artistic Control . 34

2.5.1 User Interface Parameters . 34

2.5.2 Controlling the Hatching . 40

2.6 Results . 44

2.6.1 Defining the Hatching Style . 45

2.6.2 Hatching with Different Lighting Schemes 48

2.6.3 Hatching Defining Shadows . 48

2.6.4 Hatching Integration . 48

2.6.5 Future Work . 53

3 Conclusion 57

vii

www.manaraa.com

4 Bibliography 59

viii

www.manaraa.com

Chapter 1

Introduction

In this thesis, we present a non-photorealistic rendering method to stylize the look

of a 3D animated film by adding hatching strokes to the sets and characters of the film.

An important aspect of any film is the style in which its imagery is displayed to viewers,

called its look and feel. Choosing a suitable style that interests viewers and helps a film

accomplish its purpose can be very challenging. A common problem among many com-

puter graphics films is the repetitive use of standard lighting models, shapes, and patterns

that makes their styles unimaginative. Several limits exist that make adding a unique look

and feel to a film challenging. These limits include the time alloted for making the film, its

complexity in terms of sets and characters, and the duration of the film.

To solve this problem, we describe a method of adding a hatching style consistently

among all of the shots of a film. The hatching reinforces the lighting that is already present

and thus changes dynamically as the lighting changes. Our method has two major benefits

over current existing methods. First, our style adds a hand-drawn look to a film while at the

same time maintaining the 3D lighting already used in the film. This prevents flattening the

look of the film and thus preserves the interesting qualities that make it look 3-dimensional.

Second, our method is easily scalable for films that have a large number of shots containing

many complex models and different lighting scenarios. The method is flexible enough to

allow for the proper balance between time and quality when adding hatching to films of

any length.

1

www.manaraa.com

To accomplish this, our method uses a procedural hatching algorithm that is applied

as a surface shader to 3D models. Since the model’s surface parameters are used to create

the hatching patterns, the algorithm may be applied to any model, regardless of its shape.

Also, the procedural nature of the algorithm allows randomness to be added naturally to

the patterns and allows them to be easily adjusted. In addition, we provide a process of

organizing the surface shaders into groups of objects and shots so as to make the application

of the hatching to multiple shots easily manageable. Finally, we provide parameters and

tools to allow the user to quickly and efficiently arrive at desirable settings for the hatching

and to help the user pre-visualize how changes to the hatching’s parameters will affect the

objects before they are rendered.

Chapter two of this thesis is in the form of a paper that will be submitted for publi-

cation. Following that, Chapter three provides conclusions.

2

www.manaraa.com

Chapter 2

Paper to be Submitted

2.1 Introduction

The art of making computer images look ever more pleasing, interesting, and exciting is a

growing discipline. With increased work in photorealistic rendering, the gap separating real

photographs from computer generated scenes is gradually diminishing. The related field

of non-photorealistic rendering (NPR) deals with creating stylistic renderings that stress

different types of information about a scene, often resembling well known artistic styles

in disciplines of traditional, hand-made art. This information can include shape, form,

composition, or feelings. Examples of specific art forms replicated include water color,

impressionistic paintings, architectural drawings, and pen-and-ink hatching (Fig. 2.1).

NPR styles can be applied to still images, simple animations, and animated films.

We use the term ”animated film” in this paper to denote an animation of 3D models that

is more complicated than simple movements of an object or camera, but is an animation

that contains a story, characters, and environments, like a live-action film. While most

NPR papers use still images and simple animations as examples of their techniques, little

research has been done in applying these techniques to animated films. This presents a

greater challenge than applying hatching to still images or simple animations due to a

greater number of elements that are combined into a film, such as the story, characters, and

environments. These elements make the animation longer and more visually complex, thus

requiring different controls and methods in creating hatching. Furthermore, an animated

3

www.manaraa.com

(a) (b)

(c)

Figure 2.1: Different types of computer-made NPR renderings: (a) Pen-and-ink hatching

from [WS96]. (b) A sketchy drawing from [ND04]. (c) An oil painting from [BWL].

film has a pipeline that consists of various stages of development that must be completed

in a reasonable amount of time.

The goal of this work is to present a method of hatching that will stylize the look

of an animated film. Hatching is a commonly researched NPR style that uses patterns and

arrangements of line strokes to mimic the look of hand-drawn hatches and add interest to

renderings by representing tones and textures with simple line strokes. Since traditional

hatched drawings are created on 2D media, computer-generated hatched images naturally

flatten the look of a 3D scene. This 2D look would not be desirable for a 3D animated film,

however. Over the past several years, there has been an increased interest in 3D anima-

4

www.manaraa.com

tions due to the increased realism that they can achieve as compared with 2D animations.

Although photorealism is not the intent of most 3D animations, the realism added by 3D

effects like lighting, shadows, and simulated phenomenon, entertains viewers because they

better associate what they see in the film with real life.

We present a method of adding hatching to an animated film that combines the

hatching with the lighting and shading in the film. This will allow an animation to maintain

its 3D look while adding a unique style by emphasizing the contrast between the lighter and

darker tones of its images. The hatching is part of the shaders of the objects and changes

automatically according to how the lighting on the object changes. Various parameters may

be used to adjust the style of the hatching and help maintain its consistency among the shots

of the film.

Although the applications of our method may include any project that uses 3D mod-

eled geometry, our technique is most useful for animations that contain many different

models appearing in various different shots and where rendering in real time is not a con-

cern. Our focus is to allow the user to efficiently apply the hatching and adjust it to look

desirable in any type of lighting scenario on most types of objects.

The main contribution of this work is to create a stylized look for an animated film

by combining 3D lighting with hatching. This style is unique because the resulting film

looks 3D yet has a hand-drawn feel. The 3D aspects of the film are maintained instead

of being flattened to a 2D look. Also, the hatching adds interest without becoming too

overbearing or distracting.

Another contribution of this work is a Renderman pixel shader algorithm that cre-

ates a pen-and-ink style of hatching. Other pixel shader hatching algorithms are usually

designed to be executed at real time on graphics hardware and are therefore less applicable

to general rendering systems. Our algorithm focuses more on the quality of the result-

ing hatching rather than the speed at which it will render. Finally, while most hatching

algorithms perform lookups into pre-defined stroke textures, our algorithm is completely

5

www.manaraa.com

procedural, allowing aspects of the hatching, such as width, length, density, and rotation,

to be changed easily and predictably.

Our final contribution is the set of tools we provide for a user to apply the hatching

to the shots of an animated film in a consistent and efficient manner. These tools include

sliders to vary how the hatching parameters correspond with the shot lighting, options that

help adjust the hatching to special cases, and controls to help speed up the process of

finding optimal settings for the hatching. The sliders are used to remap the extremes of a

parameter, such as the hatching width or frequency, to correspond to particular values of

light. This allows the parameter to automatically change as the value of light changes on

the object. The special case options are features that help adjust the hatching in situations

where the hatching is difficult to use, such as on really small objects. Finally, special

controls, such as ”hatching lights” and a color-coded view of the hatching, allow the user

to arrive more quickly at the desired settings for the hatching in a particular shot. These

tools are specifically designed to help the iterative process of adjusting the hatching to be

quicker and more acurate.

The remainder of the paper proceeds as follows. Section 2 discusses previous re-

search in hatching methods and the work most closely associated with the methods used in

this paper. In section 3 we explain the overall design of our system and how we incorporate

our stroke method into the workflow pipeline of a film. Section 4 describes the procedural

hatching algorithm. Section 5 describes the tools we use to apply and control the hatching.

Finally, in section 6 we present our final results and ideas for future work.

2.2 Related Work

Non-photorealistic rendering has attracted much attention in graphics research. Just as

there are many different types of artistic styles, there have been a myriad of NPR techniques

that have sought to mimic these artistic styles. This large spectrum of styles includes creat-

ing sketchy or blue-print like drawings [ND04], taking colors from paintings and applying

6

www.manaraa.com

them to photos [CSUN05], creating line drawings from 3D models [DFR04], and interac-

tively painting scenes with styles similar to oil based paints and acrylics [BWL]. Bruce and

Amy Gooch’s book on non-photorealistic rendering is a reference for other work involving

NPR [GG01]. Since our work is a method of hatching for animations, we will emphasize

in this section work that has been done with hatching and other stroke-based methods, as

well as methods of animating various NPR styles.

One of the earliest stroke based methods in NPR was done by Appel et. al.[ARS79],

in which they discuss how to ”halo” a line by making it appear to pass behind another

line. At this time NPR was a very new field, and most work done was in building the

fundamental algorithms that would be used in later works. Dooley, et al. present a method

of creating lines from 3D model data [DC90]. They discuss several qualities of lines,

including thickness and style, and how to interactively customize the attributes to create

more effective illustrations.

Stroke textures [WS94] are images of strokes that are designated with priori-

ties. The type and tone of hatching desired at a particular point on a model deter-

mines the texture to use, which is then projected back onto the model. Stroke textures

are a powerful method and have been used in many stroke based methods, including

[SABS94],[WS96],[PHWF01],[BW03b], and [BW03a].

One approach that is used frequently in NPR systems is an image based approach.

In [SABS94], an image is annotated by the user with certain key strokes. Stroke textures

are then chosen based on the input strokes and drawn automatically to create a new image

that has the look of a pen and ink illustration. In [SALS96], Salisbury et al. assign a stroke

texture to an input gray-scale image and create different scaled versions of the image while

maintaining a consistent tonal value across all of them. Another image based method can

be found in [Her98], where a photograph is used as input and then an image of paint strokes

is built layer by layer, with each layer having progressively smaller strokes.

7

www.manaraa.com

Instead of using an image based approach, our method’s form of input is object-

based, using a 3D model as input. In recent years with the increasing data processing

power of computers, this form of input has been used more often than image based ap-

proaches. One of the most influential object-based papers was done by Winkenbach and

Salesin [WS96]. This paper extended the stroke texture method they had previously intro-

duced in [WS94] to work on parametric surfaces. When dealing with curved surfaces, they

apply a method called “controlled-density hatching” to the stroke textures that orients the

strokes along the surface and gradually makes them appear or disappear as the stroke ex-

tends across the surface. This helps maintain a consistent tone across the object. In [VB99],

half-toned images are automatically created by applying halftoning textures to 3D models

and using ordered dithering and error diffusion to help control the placement and look of

the halftoning. Other object based methods are [HZ00], which uses a direction field for

computing hatching on smooth surfaces that are not parameterized, and [WM04], which

uses a hybrid between image and object based approaches to more clearly represent strokes

in complex, detailed regions by approximating the surface properties of the local regions.

In recent years, many researchers have focused on animating NPR techniques. An-

imated NPR techniques may be off-line or real time. One of the first off-line animation

techniques was done by Meier [Mei96] on animated brush stroke styles. This work ad-

dresses the problem of temporal coherence with brush strokes. Temporal coherence refers

to how well an effect transitions from frame to frame in an animation. If a technique fails to

properly address temporal coherence, then either a shower-door effect is created where the

objects appear to swim underneath their textures, or the textures appear in random places

from frame to frame. Both of these results are distracting for viewers to watch in an ani-

mation. Meier solves this problem by modeling surfaces as 3D particle sets and rendering

them as 2D brush strokes in screen space. Another off-line animation technique was de-

veloped by Curtis [Cur98]. This technique creates a sketchy animation style by rendering

a depth of the objects and then a vector field of particles that determine the directions of

8

www.manaraa.com

how to perturb the silhouette. In [DS00], depth information is used as well in creating a

pen-and-ink illustration style for trees that addresses how to draw strokes in complex areas

while preventing the resulting illustration from appearing too busy. Abstract primitives are

chosen to represent the trees, such as planes or disks, depth continuities are determined to

decide what part of the primitives to draw, and then a hybrid pixel based and analytical

based algorithm is used to handle the complex geometric data.

More common than off-line animation techniques are real-time NPR techniques.

One of the earliest of these techniques was presented in [MKT+97] where a tool was pro-

posed to improve the descriptions of lines and visible surface algorithms to create various

NPR styles that animate at interactive rates. These styles were mostly stroke based sil-

houette styles that used straight and sketchy outlines, as well as hatching-type strokes that

appeared near the borders of the outlines. In [LMHB00], the quality of real time NPR was

improved with a technique that allows more than just silhouette NPR styles to animate at

real-time, including fully hatched objects and toon-shaded style renderings. This technique

allows objects to scale while maintaining stroke coherence in image space, instead of the

more commonly used object space. During the following few years, the most effective real

time stroke based techniques were based on the use of stroke textures and various improve-

ments to the basic technique. In both [PHWF01] and [Fre01], layers of mip-mapped stroke

textures, called tonal art maps, were used to create fast and convincing hatching styles, with

the former being a more complex and true pen-and-ink style, while the latter was a simpler

design yet not as CPU intensive. A variation of stroke textures was introduced by [Ver02],

where threshold textures were used to add discrete colors. In this system, less bluring oc-

curred at intermediate mip-map levels, although the hatching itself suffered from a simpler,

more mechanical look than in [PHWF01].

Buchin et al. authored two variations of the stroke texture methods in [BW03a] and

[BW03b]. In the former, they experiment with other variations, such as changing brush

stroke patterns to create a pointillism effect and adding lighting variation to hand drawn

9

www.manaraa.com

illustrations. In the latter, their method allows the style of strokes to change interactively

by encoding lookups into stroke textures.

In addition to the systems cited above, two other stroke texture based approaches

were created during the same time period. [WB03] presents optimizations to stroke textures

involving uncertainty functions and layered stroke textures. [FV03] expands the use of the

stroke textures from [PHWF01] to encompass arbitrary textures, such as brick and rock

textures. Finally, one of the most recent stroke texture techniques, presented in [FMS04],

uses layered hand-drawn halftoned textures to create a nice stroke effect for a real time

game engine.

A pitfall of current real time stroke techniques is the quality of the final renderings.

Real time techniques offer much in terms of speed and interactivity, but as a result the

quality of the final animations is more comparable to video game quality graphics than

movie quality renderings. We chose to implement an off-line animation technique so that

the final quality of our hatching technique would be comparable to the quality of current

professional 3D animated films and so the hatching would not be distracting to view for the

duration of a film.

The most recent developments in animated NPR techniques have strayed away from

stroke textures into other areas with different styles and approaches. A method for drawing

suggestive contours is shown in [DFR04], where changes in viewpoint are analyzed and

contours are rendered at real-time rates. A different type of contour technique that takes

user-supplied surface and anchor strokes and draws essential lines for character faces is

demonstrated in [LD04]. Other real time techniques include a method for depicting NPR

motion in games [HHD04], a method for synthesizing painterly, sketchy, and cartoon styles

from video [CRH05], and a techique that describes how to create animations of mosaics

while preserving temporal coherence [SLK05]. Although these techniques are effective in

their respective applications, they are not applicable to techniques that create stroke styles

on 3D models.

10

www.manaraa.com

The current work in stroke based NPR methods for animations is not suitable for

an animated film for several reasons. First, these styles are not visually congruent with the

purposes of a 3D animated film. As opposed to a 2D style animated film, a 3D animated

film looks closer to real life and is more perceptually rewarding. Since NPR techniques

are typically based on a traditional drawing or art form, the results are often flat looking.

This is acceptable since NPR focuses on conveying different types of information besides

what realism is able to offer. When applying an NPR style to an animated film, however,

the 3D lighting and effects that define the 3D animation genre are lost, and the film appears

2D. Our objective, therefore, is to present a style of NPR that both conveys a simple, hand-

made feel that is typical from stroke styles, and that also preserves the 3D lighting style

that characterizes 3D films.

Another reason why current stroke techniques are not suitable for animated film is

the lack of tools needed to effectively apply strokes to the shots of a film in an efficient

manner. The demonstrations for other techniques are usually short and consist of a simple

tranformation of the object or of the camera in the scene. Applying these techniques to a

film that is at least several minutes in length would be difficult unless proper tools existed

to help expedite the process of applying the method and adjusting the appropriate settings.

In our method we offer tools that make finding desirable settings for the hatching of many

different shots in a film more practical.

In their advanced tutorial on Renderman, Apodaca and Gritz present a stroke based

surface shader that produces a look similar to wood block engravings [AG00] (See Fig. 2.2).

Their techniques in drawing strokes with consistent widths across any object are based

on ideas introduced by Winkenbach and Salesin in their paper on rendering hatching on

parametric surfaces [WS96]. We base our procedural technique on the shader by Apodaca

and Gritz and enhance it by creating strokes that look closer to a pen-and-ink hatching style

and whose parameters make it very flexible for a variety of models and lighting conditions.

11

www.manaraa.com

(a)

(b)

Figure 2.2: (a) An actual wood block engraving of Brahma head from Temple Phnom-Boc

(shown in [AG00]). (b) A teapot model shaded with a wood block surface shader.

2.3 System Design

The contribution of this work is a unique NPR style that combines hatching with the light-

ing of a film. The inspiration behind this style started with our desire to create a style with

two major properties, a style which felt hand-drawn yet looked 3-dimensional. We wanted

a hand-drawn feeling that is similar to the style seen in field book or botanical illustrations.

Fig. 2.3 shows examples of such illustrations. There are several characteristics from these

images that help convey a hand-drawn feel:

12

www.manaraa.com

Figure 2.3: Examples of images that inspired the look and feel for the short film, Noggin.

While we wanted a similar authentic, hand-drawn feel to our rendering style, we focused

on exaggerating the look of the hatching so that it would have a greater effect on the tones

in the final images.

13

www.manaraa.com

(a) (b)

(c) (d)

Figure 2.4: A shot from a 3D animated film at different stages of its pipeline (from A Bug’s

Life, Pixar 1998). (a) Conceptual Art - artists hand draw the key story points of the shot.

(b) Editorial - 3D models are built with default colors and lighting and are roughly placed

and moved in the shot. (c) Animation - final animation is created for the characters and

cameras. (d) Shading and Lighting - final shaders are applied to objects and final lighting

is set up for the shot.

1. A color scheme with simple textures and a small palette of saturated colors.

2. The colors are more faded on objects that appear far away.

3. A form of stroking that accents the feeling of being hand-made.

Although we desired our style to have these characteristics, the second major prop-

erty of our style was that it look 3-dimensional. To fulfill this property, we have designed

our method to be used within a typical production pipeline for a 3D animated film. The pro-

duction pipeline of a film is the series of stages the film must pass through from the time the

idea is conceived until the film is completely finished. These stages usually include tasks

such as pre-visualization, modeling, animation, shading, lighting, and rendering. Fig. 2.4

shows an example of how a scene looks as it passes through each of the major stages of a

film’s pipeline. Since our method affects the look and feel of a film, it will be incorporated

into the shading and lighting stages of its pipeline.

14

www.manaraa.com

To fulfill both our hand-drawn and 3D properties, we restate the above characteris-

tics as the design goals of our system:

1. An illustrated-looking hatching style - We sought to create a hatching style that is

more prominent than what is noticed in the images of Fig. 2.3. By exaggerating

the hatching effect, we emphasize the hand-drawn look that is characteristic of work

done with hatching.

2. A color scheme with simple textures and flexible 3D lighting - Since our method is

targeted for 3D animated films, our style needs to allow the use of a normal color

palette typically used for the shading, lighting, and other effects in such films, as

opposed to a monotonic style that is often used in hatching methods. Texture designs

are kept simple so as not to conflict visually with the hatching. Because of the nature

of some objects or effects, hatching may be altered or even excluded from certain

objects.

3. Fading of colors on distant objects - The farther objects are from the camera, the

more faded their colors should be. Since the direction of the viewer’s eye is a crucial

aspect of film-making, the fading controls must be flexible to allow the adjustment

of individual objects.

Of these goals, the illustrated hatching style is the most complex in terms of design

and execution and will therefore receive the most focus during the rest of the paper. The

color scheme and fading goals are mostly addressed in this section and section 5 where we

explain the design of our system and the tools for controlling the look of our hatching style.

In the rest of this section, we describe how our system is organized to accomplish the above

design goals by looking at how our method fits into a film’s pipeline.

15

www.manaraa.com

2.3.1 Hatching in the Pipeline

To work effectively in a film’s pipeline, the workflow of our system must be scalable for

films with any number of objects and shots. The major focus of our workflow is to ensure

the hatching is consistent among objects and shots and that it can be properly adjusted

on each object in an efficient manner. Here we describe the setup for how our method is

accessed by each object in a film.

In a typical pipeline, the surface colors of objects are defined by surface shading

programs, or shaders, that are connected to the objects of a scene and are executed when

the scene is rendered. The most widely used system for rendering computer graphics for

film quality productions is Pixar’s Renderman. We therefore implemented our method as

a shading system for Renderman. This allows our system to be flexible for many different

rendering systems. It also allows us to take advantage of the useful features of the Render-

man language. The most important feature is its use of the Reyes architecture as its core

rendering algorithm, which uses a geometric pipeline that dices primitives and organizes

pixels into buckets to help use memory as efficiently as possible. This system also allows

us to filter the hatching to help prevent aliasing artifacts such as dot crawl and shimmering,

as well as making the hatching look better when motion blur is applied.

In Renderman, shaders that define the color of the surface of an object are called

surface shaders. Rather than being a specific surface shader, our method needs to apply

our style to all of the surface shaders created for all of the objects of the film. Thus, we

created a global surface shader that contains various features needed for our system to work

effectively. This global shader is essentially a node that receives an object’s surface texture

as an input. The input texture is the basic color of the object before any lighting calculations

are made. An option is set on the global shader to determine which of the film’s lighting

models are applied to the object (i.e. plastic, metal, marble, etc.). The global shader also

contains the other parameters and controls used to adjust the hatching. These parameters

will be discussed in section 5. In addition to hatching controls, there are other parameters

16

www.manaraa.com

as well, such as a ramp for specifying the distance at which an object is faded and by what

amount.

While the global shader allows us to have individual control for each object, it can

be very tedious and even impractical to have to set its parameters for every object in the film.

For this reason, we put objects with like properties into shading groups and create default

template global shaders for each group. The shots of a film are grouped into different

scenes. Each scene has its own group of surface shaders called a palette. A template shader

is then created for each group of objects in the scene’s palette. The settings in the template

only have to be set once for all of the objects in a shading group. If a particular object of

a group requires unique settings, then the template is copied and only the settings that are

different need to be specified. Likewise, each shot has its own palette of template shaders

that are set only if an object requires special settings for that shot. In this manner, settings

may be shared among objects of a group and among shots of a scene to save on setup time,

while settings may still be specified for individual objects in individual shots to allow for

the necessary level of control.

Although the parameters of a typical surface shader are finalized during the shading

stage, most of the changes made to our global shader are done during the lighting stage. The

hatching algorithm is a pattern that is part of an object’s surface texture, but it also responds

to the lighting model of the object. We explain in detail in the following two sections how

the hatching algorithm works and how it it controlled by its parameters, including how it

takes into account the amount of light hitting the object. Due to this dependency on light,

the hatching parameters need to be fine-tuned on a shot per shot basis as the user sets up

the lights for each shot. Other aspects of our style may also need to be set during this stage,

including specifying objects that should not use hatching or changing hatching to stippling

for smaller objects.

17

www.manaraa.com

2.4 Procedural Algorithm

The most significant part of our method is the procedural algorithm that actually draws

the stroking pattern. When an object is ready to be rendered, Renderman dices it into

micropolygons and executes the instructions of the shader for each pixel of the object that

appears in the final image. The algorithm creates a stroked pattern based entirely on the

surface parameterization of the object and the input parameters of the shader and does not

depend on the input of separate stroke images. The main advantage of this procedural

approach is the ease of adapting to changes in the style of the pattern. A film is in a

constant state of change until it is finished. As the pattern of the desired hatching changes,

no separate images need to be recreated or changed, only the input parameters of the shader

need to be adjusted.

2.4.1 Controlled-density Hatching

One of the keys to successfully creating an NPR render that looks like a particular style

of art is to carefully preserve the main aspects of that style. One of the most fundamental

aspects of a pen-and-ink hatched drawing is the consistency to the width of the pen strokes.

Since the pen of the artist never changes in width as it is used throughout a drawing, varying

tonal values are achieved by changing the number of hatches in a given area instead of

changing the width of the hatches. While trivial in a standard drawing, the task is more

complicated when using the surface parameters of 3D objects. For example, imagine the

pattern on the surface of an object consists of several straight lines. As the object moves

towards the camera, the stripes will grow in apparent size. In a hatched drawing, however,

the lines of all objects should maintain a constant width. Instead of growing in size as the

object moves closer to the camera, more stripes should be drawn on the object in order to

maintain a consistent tonal value.

To solve this problem, Winkenbach and Salesin [WS96] introduced a method called

controlled-density hatching. Instead of using the surface parameters of an object in its own

18

www.manaraa.com

object space to modulate the hatching, these parameters are instead transformed into screen

space. Because the dimensions of a rendered image do not change, the hatches are based

on consistent intervals that are constant as an object moves in 3D space.

Apodaca and Gritz applied the concept of controlled-density hatching from

Winkenbach’s paper to a Renderman shader [AG00]. This shader creates a form of hatched

lines that resemble the engravings of a woodblock print. Fig. 2.2(b) shows an example of

this shader applied to a teapot. Although the look of the shader is different than our target

look, it provides a framework for doing controlled-density hatching in our own algorithm.

We start by explaining how a typical striping pattern would be approached in a

shader and then show what is needed to control the density of the lines. We summarize

the explanation given in [AG00], and refer the reader there for a more detailed coverage

of the material. Our explanation provides a basic overview that helps in understanding the

alterations in their work needed to create our method.

To create a striped pattern, our end goal is to create a continuous pattern that al-

ternates between black and white. We do this by first recognizing that any point on the

surface of an object can be uniquely described by a set of two surface parameters, u and

v, that run horizontally and vertically, respectively. We choose to use u for our examples,

though the same steps would be followed for v. Since this parameter’s range is from 0 to 1,

we can represent a smooth gradient across a surface by using 0 for black and 1 for white.

To modify this into a repeatable pattern, the mod function can be used:

sawtooth = mod(u * frequency, 1)

The frequency corresponds to the number of regions into which the surface is di-

vided. By evaluating the modulus 1 of u multiplied by the frequency, the result is sawtooth,

which linearly increases from 0 to 1 over each region (see Fig. 2.5(a)). We create a stiped

pattern by applying two more functions, as shown in the following lines:

triangle = abs(2.0 * sawtooth - 1.0)

19

www.manaraa.com

square = step(duty, triangle)

Feeding sawtooth into an absolute value function creates the triangle value, which

is a series of ”uphills” and ”downhills” from 1 to 0 and back to 1 in each ”frequency” region

(see Fig. 2.5(b)). Then we use duty variable as a constant valued threshold that intersects

triangle. The step function returns 0 if triangle is less than duty, and 1 if it is greater than

or equal to it (see Fig. 2.5(c)). By using our mappings of 0 to black and 1 to white as we

stated before, the step function results in a striped pattern, as seen in Fig. 2.6. A low value

of duty creates a dense patten of lines, while a higher value thins it out.

As seen in Fig. 2.6, the convergence of lines in the pinch-point areas of the sphere

create a sense of darker tone in the middle of the sphere where the lines are wider. This is

undesirable since we desire a consistent tone that is independent of the specific curvature of

an object. This is solved by using a measure of how quickly u changes at any point across

the surface to modulate the frequency of the lines. The Renderman Shader Language, or

RSL, provides several built-in derivatives, including one called dPdu that is the derivative

of a 3D point in space, P, with respect to u. Because this gives a measure of how stretched

or pinched a surface is, dPdu is used to double the frequency as length(dPdu) doubles in

value:

logdp = log(length(dPdu), 2)

ilogdp = floor(logdp)

stripes = pow(2, ilogdp)

sawtooth = mod(u * stripes * frequency, 1)

By using a log function, ilogdp will increase by one every time length(dPdu) dou-

bles, therefore doubling the value of stripes. It is then used as an additional multiplier

in the previous mod function to influence the frequency of the striped pattern (Fig. 2.7(a)).

The discrete jumps in frequency are an obvious distraction, so the difference between logdp

20

www.manaraa.com

(a)

(b)

(c)

Figure 2.5: (a) A graph of the sawtooth value. This results in a series of gradients that

range from 0 to 1. (b) A graph of the triangle value, which uses absolute value to create

symmetric ”spikes” in each gradient region. (c) A graph showing how the duty value is

used with triangle to create a step function. The blue line is the graph of triangle from (b).

The green line is duty, which is a threshold used to determine how large the striped regions

will be. When triangle dips below duty, the result is 0; when triangle rises above duty, the

result is 1. This step function, or square, is shown by the red line. The white stripes in

Fig. 2.6 appear whenever square equals 1.

21

www.manaraa.com

Figure 2.6: Simple striped pattern created with the mod and step functions.

and ilogdp is used to modulate duty in the step function to create lines of consistent width

(Fig. 2.7(b)):

(a) (b)

Figure 2.7: (a) A step towards uniform line density. The frequency of the lines double as

dPdu doubles, or as the lines pass through regions of greater surface area. (b) The difference

between logdp and ilogdp, called transition, is used in the step function to modulate the

frequency inbetween discrete frequency jumps. The resulting value square gives us lines

of consistent width:

transition=logdp-ilogdp

square=step(duty*(1-transition/2), triangle)

The final problem that remains to control the density of the lines is that as the object

recedes from the camera, the apparent width of the lines will change. To prevent this, the

22

www.manaraa.com

derivative needs to be modified to be relative to screen space. In RSL, a new derivative can

be created by transforming dPdu into screen space and then scaling it to a desired level:

dp=dpscale*vtransform ("screen", dPdu)

The dp variable then replaces dPdu in the above log function. To taper the ends

of the hatches, the use of transition by the step function is altered so that new hatches are

more gradually introduced in transition areas:

transtriangle=abs((1+transition)*triangle-transition)

square=step(duty, transtriangle)

As shown in Fig. 2.8, this creates a pattern whose lines maintain a consistent tone

across the whole object. The code listing in Fig. 2.9 shows the combined code used to

generate this pattern. As the lines on the object approach sections of smaller area, existing

lines gradually thin and then disappear. Likewise, as the lines approach sections of larger

area, new lines gradually appear. The same happens as the apparent size of the object on

the screen changes. New lines appear as the object comes closer to the view, and existing

lines disappear as it moves farther away.

Figure 2.8: The amount of screen space that an object takes up is used to further modulate

the frequency of the hatching. A more consistent tone is maintained than in Fig. 2.7.

Another important concept that Apodaca and Gritz present is modulating the width

of the lines based on the value of light that hits the surface of the object. To accomplish

23

www.manaraa.com

dp = dpscale * vtransform ("screen", dPdu)

logdp = log(length(dPdu), 2)

ilogdp = floor(logdp)

stripes = pow(2, ilogdp)

sawtooth = mod(u * stripes * frequency, 1)

triangle = abs(2.0 * sawtooth - 1.0)

transition = logdp - ilogdp

transtriangle = abs((1 + transition) * triangle - transition)

square = step(duty, transtriangle)

final_color = square

Figure 2.9: The combined code that produces controlled-density hatching, such as in

Fig. 2.8.

this, the light contribution at the current pixel is converted to grayscale. By multiplying this

number by duty, the lines gradually disappear as they approach areas of increased light. As

shown in the next section, we use the light contribution to modulate many different aspects

of the hatching in order to simulate changing tonal values.

2.4.2 Stylized Hatching

One of the goal properties of our style that we mentioned in the last section was a hand-

drawn look. Although the woodblock shader provides an important basis for drawing

strokes on surfaces, its strokes are too uniform to be interpreted as hand-made. Fig. 2.10

shows an example of a hatched image from [PHWF01] that better conveys a hand-made

look. By analyzing results of recent stroking methods that share similar hand-sketched

looks, we observed three characteristics common to these drawings:

1. smaller, individual strokes instead of long, continuous ones

24

www.manaraa.com

2. strokes that overlap each other

3. strokes that contain randomness in placement, shape, and alignment

The challenge in incorporating these characteristics into our algorithm was to find

solutions that would allow us to maintain controlled-density and light-modulated hatching.

Figure 2.10: An example of hatching that is more characteristic of the type of hatching

we wanted to achieve than the wood block shader’s hatching. Several characteristics of

this hatching make it more interesting and more effective in creating tonal shifts, such as

smaller strokes of hatching and overlapping strokes.

Individual strokes Using more shorter strokes instead of fewer continuous strokes

adds a more sketchy look to the hatching. It also allows more flexibility in randomizing

various visual attributes of the hatches. To do this, we must divide the hatches into columns,

similar to how we created rows of hatching in the woodblock shader. Similar to controlling

the widths of the hatching, we need to preserve the length of the hatches as the object

moves about in 3D space. Therefore, we must calculate another transtriangle parameter,

this time in the opposite direction (the v direction). We call this value transtriangle2 and

show the results of mapping this value to a sphere in Fig. 2.11. By taking the product of

transtriangle and transtriangle2, we create a grid-like pattern of hatches.

From close inspection of Fig. 2.11(c), it is obvious that the hatches are diamond

shaped. To round out the hatches, we need a function that will take a linear increase and

25

www.manaraa.com

(a) (b)

(c)

Figure 2.11: (a) The transtriangle value mapped to a sphere. (b) transtriangle2 is similar

to transtriagle, but goes in the opposite direction with a different frequency. (c) The prod-

uct of transtriangle and the inverse of transtriangle2 create a pattern that is the basis for

creating multiple hatches per row.

output a curve that is flat in the middle and that gradually falls off at the ends. In [EMP+03],

a type of logarithmic function, called a bias function, is described as follows:

bias(b, t) = tln(b)/ln(0.5) (2.1)

As t varies over the interval [0,1], the bias function follows these rules:

1. bias(b,0) = 0

2. bias(b,.5) = b

3. bias(b,1) = 1

26

www.manaraa.com

By using the inverse of transtriangle2 as input into a bias function and then using

the result as input into another bias function, both ends of the ”diamond” are smoothed.

The new gradient is produced by inverting the second bias result and multipying it by

transtriangle (Fig. 2.12(a)):

bias(.1,bias(.5,1− transtriangle2))) (2.2)

We apply a smoothstep to the gradient to create our final hatch shape (Fig. 2.12(b)).

In this example the size of the hatches has been increased higher than normal for explana-

tory purposes. To test the preservation of the widths and lengths of the hatching, we com-

pare Fig. 2.12(b) with additional images of a sphere that are at two locations further from

the camera. Notice that the widths of the hatches stay consistent (Fig. 2.13).

(a) (b)

Figure 2.12: (a) By using bias, we have changed the hatching gradient from a diamond

shape to a more rounded one. (b) A smoothstep applied to the gradient gives us defined

hatches.

Overlapping strokes An artist creates varying tones in a hatched illustration by

drawing overlapping layers. The human hand naturally crosses lines together instead of

keeping them separated. The easiest way to mimic this look in a surface shader is by cre-

ating more than one copy of the hatching, vary each copy differently, and then layer them

together. In RSL, the mix function is used to put one color on top of another color according

to a given pattern:

27

www.manaraa.com

(a) (b)

Figure 2.13: As the sphere from Fig. 2.12(b) above recedes from the camera in (a) and

then even further in (b), the hatching maintains a consistent width.

mixedColor = mix(colora,colorb,blend) (2.3)

where a is the color of layer 1, b is the color of layer 2, and blend is a float value

in the range from 0 to 1 that determines the output according to the linear equation, a*(1-

blend) + b*blend. When representing the hatching as a float value between 0 and 1, 0

represents a pixel with no hatching, and 1 represents a pixel with only hatching.

Randomness in strokes To add randomness to strokes, we use the noise function of

RSL. The noise function is a stochastic function that appears random but is really pseudo-

random, meaning its output is repeatable when given the same input. We provide a certain

input for the noise function depending on how much we want to vary a particular attribute

of the hatching (i.e. we use the layer number as input if we want to vary a characteristic

differently depending on its layer, or we use the hatch id as input if we want to vary each

hatch individually). The output from the noise function is then the varying factor of the

characteristic (e.g. the rotational offset, if we vary the rotation of the hatching).

To accomplish this, we represent each hatch with a unique parameter, or id. If the id

is constant across all pixels that make up a specific hatch, it can be used in noise functions

to vary the hatch without breaking it up in undesirable ways. For example, suppose we

28

www.manaraa.com

have a noise function that will produce a psuedo-random number based on the function’s

input. For any particular input value, the exact same output will always be produced. We

use the output from such a function to perturb the position of a hatch in u and v. Since our

id is consistent across a particular hatch, each pixel of the hatch will be moved in u and v

by the same amount.

For a general pattern that is repeated in parametric space on the surface of an object,

we can use row and column indices to calculate a unique id for each instance of the pattern.

If the number of iterations of the pattern in the u and v directions are known, the floor

function can be used to find the row and column of the ”cell” at which the current pixel is

located:

rowIndex = floor(u * freq)

colIndex = floor(v * freq)

The variable f req is how many times the pattern is repeated, which may be different

in the u and v directions. To apply this technique to the hatching, we apply the floor function

to the product of u and dp, our base frequency. The result is shown in Fig. 2.14. Each band

of color is a constant value, and represents the area covered by one hatch. This constant

value can therefore be used as an id for the hatch. However, the figure illustrates problem

areas in the regions where the frequency of the hatching doubles in value, shown by abrupt

changes in value while scanning horizontally across the model. The frequencies in these

areas need to be modulated so that each grey band has a constant width across the whole

object. This problem is similar to the one discussed in the previous subsection for Fig. 2.7,

which was solved by calculating the transtriangle value across the area spanned by the

transition gradient.

We can again use the transition value to smooth out these areas of jumps in fre-

quencies, albeit in a different manner. By looking at Fig. 2.14 we see that the color of the

centers of every other smaller band corresponds exactly with the color of the central 50% of

the adjacent larger band. By offsetting the color values only in the top and bottom regions

29

www.manaraa.com

Figure 2.14: A visual representation of each hatch having a unique row index. Notice the

discrete frequency jumps that are a result of not adjusting for transition areas.

of the larger bands, we can make them correspond in value to the smaller bands. Therefore,

the first step is to automatically create masks for the top and bottom regions of the bands.

By using the sawtooth variable, which we refer to here as swt, and the transition variable,

we can pass them through a step function and create each of these masks. The formulas to

do so are shown below, and images representing their values are shown in Fig. 2.15:

sawtrans = step(.5, swt)∗ (1− step(transition/4+ .5, swt)) (2.4)

sawtrans2 = (1− step(.5, swt))∗ step(.5− (transition/4), swt) (2.5)

The next step is to calculate the amount by which to offset the tops and bottoms

of the bands. Through experimentation we found a reasonable offset by multiplying the

reciprocal of dp by .5. We then multiply the offset by our “top” mask so that the offset only

affects the top regions of the bands. Subracting this offset from the row index lowers the

values at the tops of the larger bands, making them consistent with the neigboring smaller

bands (Fig. 2.16(a)). Likewise, we can increase the values at the bottoms of the larger bands

by adding the product of the offset and the second mask to the row index (Fig. 2.16(b)).

We now have regions with unique row indices that correspond with individual hatches

and therefore maintain the property of controlled-density hatching. Since our hatching

30

www.manaraa.com

(a) (b)

Figure 2.15: Masks used to isolate the (a) top and (b) bottom areas of the bands so that

offsets may be applied to the masked areas in order to make smooth transitions of bands

across frequency jumps.

technique uses multiple hatches per row, we apply our hatch id technique to the v direction

to create a unique column index. We then use our row and column indices together as

inputs to a 2D noise function to produce a unique value for each individual hatch, as shown

in Fig. 2.17.

(a) (b)

Figure 2.16: Fixing the frequency jump problem. (a) The result after subtracting our offset

from Fig. 2.14 in the areas masked by Fig. 2.15(a). (b) The result after adding our offset to

Fig. 2.14 in the areas masked by Fig. 2.15(b).

Another method to vary the hatches is by using their layer index. For example, to

vary the orientation of the hatching, we perturb the rotation of the hatch around its center.

To change this characteristic differently for each layer of the hatching, the layer id is input

31

www.manaraa.com

Figure 2.17: By using the row and column of a hatch as input into a noise function, a unique

id can be created for each hatch.

into the noise function. The output from the noise function is then input into a function that

rotates a point in 2D surface space. To find the new positions of a point at u and v on the

surface of a hatch, we do the following:

for (i = 1; i <= layers; i += 1) {

...

float noii = noise(i * 10 + 0.5);

rotate2d(u, v, radians(noii), centerX,

centerY, newU, newV);

...

}

Another technique for varying the hatching is known as bombing. In [May96],

“bombing” is described as random placement patterns where a shape is dropped at random

positions in space (see Fig. 2.18). Using row and column indices of a hatch, we randomize

its position by doing the following:

float noirc = noise(c * 10 + 0.5, r * 10 + 0.5);

scat = udn(noirc * 967, min, max);

if (scat >= threshold && scat < 1-threshold) {

32

www.manaraa.com

rndx = udn(noirc * 834, xmin, xmax);

rndy = udn(noirc * 726, ymin, ymax);

...

hatching code

...

}

We use the noise output, noirc, as input to a uniformly distributed noise function,

udn. The udn function returns a pseudo-random number that is evenly distributed between

the given parameters min and max. By so doing we generate three different random outputs,

randx, randy, and scat. The variables randx and randy are our random positions for the

bombing effect. If scat is within a certain threshold, then the rest of the code to create the

current hatch is executed. This allows only a portion of the hatches to be drawn, further

helping the bombing effect. In a similar fashion, other attributes of the hatching may be

varied. We describe the meaning and use of these attributes in the next section.

Figure 2.18: An example of the bombing technique described by [May96] using an image

of a simple diamond pattern also shown in [May96]. Each diamond in a regular, evenly

spaced grid of 4 x 4 diamonds has been perturbed and put in a new location within its own

cell.

33

www.manaraa.com

2.5 Artistic Control

While our procedural hatching algorithm is part of an object’s shading, the most important

part of our method is accomplished during the lighting phase. Although default values are

set for the hatching’s parameters on any object to which it is applied, the lighters must be

able to effectively control how the hatching appears on objects. A particular effect may

be applied to many different shots in a film, so it is especially important that the tools for

applying the effect are straightforward and efficient to use. Most other recent NPR papers

focus more on the speed or look of their methods but do not detail much about the interface

and controls used to apply their methods. While applying hatching to many shots of a film,

several factors my make the process slow or cumbersome. Many models may be too thin

or small or have too irregular shapes to use normal strokes for hatching. Or as the lighting

scenarios of the film change, the hatching may be adjusted more than once to prevent it

from being inconsistent or overbearing. In this section we discuss the parameters used to

adjust the hatching and actual examples of how we use these parameters and additional

helper controls to light a shot.

2.5.1 User Interface Parameters

Once all of the object surface shaders have been completed for a shot, it is assigned to a

lighter for the placement of its lights. As we discussed above, each shot contains a set

palette and a shot palette of surface shaders. The input parameters of the shaders have

already been set, except for any shot specific cases where they may need to be tweaked.

Since the hatching is so dependent on lighting, its parameters are adjusted the most while

the shot is being lit. In Tables 1 through 3 below are charts of the parameters used to ad-

just the appearance of the hatching and descriptions of what they do. We have divided the

parameters into a few different categories to help explain their uses. Some of these pa-

rameters are rarely changed from shot to shot or object to object, while others are changed

34

www.manaraa.com

frequently. We briefly explain in the charts what each of the parameters do, spending more

time with those that are more crucial to the look of the hatching.

Parameter Name Parameter Description

single layers number of layers of single hatching

cross layers number of layers of cross hatching

cross degrees angle offset of cross hatching

rotation offset global angle offset for all hatching

u offset global offset in u for all hatching

v offset global offset in v for all hatching

cross start lighting threshold where cross hatching starts

wiggle amplitude height of waves in wiggles of hatching

wiggle frequency frequency of waves in wiggles of hatching

Table 2.1: General attributes and settings.

The first group of parameters are general attributes and settings for the hatching.

Once satisfying default values have been found, these parameters do not need to be adjusted

much among different objects and shots. The rotational offset is for all of the hatching on

the object and is offset from either the u or v direction. This is useful when the u and

v directions are not visually suitable for the hatching. Likewise, the u and v offsets are

global shifts of the hatching, and they exist primarily to prevent the hatching from looking

identical on any two objects. The wiggles of the hatching are sine waves that give the

hatches a sense of waviness if straight hatches are not desired.

Parameter Name Parameter Description

rotate max max rotational variation

rotate min min rotational variation

vrep min min hatch repititions in v

vrep max max hatch repititions in v

urep min min hatch repititions in u

urep max max hatch repititions in u

hi width upper bound of width of hatches

Table 2.2: Bounds on variation of the hatches.

35

www.manaraa.com

The parameters in Table 2 deal more with the bounds of the variation of the hatches.

Examples include the minimum and maximum number of rows and columns of hatches or

the extents of how far a hatch can be rotated from its normal direction. They are quick to

tune and are not changed very often so that the hatching maintains a consistent look.

To better understand these first two groups of parameters, we have included a series

of images (Fig. 2.19) that exhibit variations in the parameters being applied to a sphere.

The first several images show certain parameters being applied in an iterative fashion. Af-

ter these, there are more images that show additional possible parameter settings for the

hatching.

Parameter Name Parameter Description

lite1 oldmin old min for overall intensity mapping 1

lite1 oldmax old max for overall intensity mapping 1

lite1 newmin new min for overall intensity mapping 1

lite1 newmax new max for overall intensity mapping 1

lite2 oldmin old min for overall intensity mapping 2

lite2 oldmax old max for overall intensity mapping 2

lite2 newmin new min for overall intensity mapping 2

lite2 newmax new max for overall intensity mapping 2

vrep start intensity mapping for max reps in v

vrep end intensity mapping for min reps in v

urep start intensity mapping for min reps in u

urep end intensity mapping for max reps in u

scatter start intensity mapping for max density of scatter

scatter end intensity mapping for min density of scatter

cross scat start mapping for max density of cross scatter

cross scat end mapping for min density of cross scatter

width start intesity mapping for max width

width end intensity mapping for min width

cross width start intensity mapping for max cross width

cross width end intensity mapping for min cross width

Table 2.3: Remapping hatching due to lighting.

The final group of parameters, shown in Table 2.3, are parameters that control how

the hatching responds to the intensity of light on an object. Of all the parameters, these

are adjusted the most. For the above pairs of parameters that are named with start and

36

www.manaraa.com

(a) Varying

widths of the

columns of

hatching

(b) Slight varying

of y position of

hatch in cell

(c) Adding

wiggles to vary

how straight the

hatches are

(d) Adding a

bombing, or

scattering, effect

(e) Overall

opacity varied

according to

value of light

(f) Opacities

along each hatch

are varied

(g) Hatches with

a greater overall

width

(h) Cross

hatching covers a

little amount of

surface area

(i) Cross hatching

covers a larger

surface area

(j) Hatching with

a lower overall

frequency

(k) Low random

rotation of

individual

hatches

(l) High random

rotation of

individual

hatches

(m) A few layers

of hatching

(n) Multiple

layers of hatching

Figure 2.19: Shown here is a series of images that show the effects of many of the hatch-

ing settings. Images (a) through (f) form a progression showing various ways of adding

variety to the hatching, where each image contains the indicated type of variation added

to the previous image. Images (g) through (n) show other settings that add variation to the

hatching.

37

www.manaraa.com

end, a remapping function is used to map the lighting value extremes (defaults are 0 and

1) to the values that are input for start and end. For example, suppose that the values 1

and 30 had been entered for the parameters urepmin and urepmax, respectively. Wherever

there is an intensity of 0, the number of repititions of hatches in u at that point will be 1.

Wherever there is an intensity of 1, the number of repititions of u will be 30. All intensity

values between 0 and 1 will be mapped linearly between 1 and 30. The above min and

max parameter pairs are used to remap the intensity value on an object to a different range

to adjust the hatching tones. The following function is used to remap a variable from one

range to another range:

newValue = (newMax−newMin)/(oldMax−oldMin)

∗(value−oldMin)+newMin (2.6)

where value is the intensity of light in the domain from 0 to 1 that is originally

calculated for the current pixel of the object that is being shaded. For example, suppose

that a certain point on an object has an intensity of .75. The lighter decides that this value

creates a hatching tonal value that looks too dark. To fix it, the values 0, 1, 0, 2, are input

for the parameters oldmin, oldmax, newmin, and newmax. By plugging in these values to

the above remapping equation, we get:

(2 - 0) / (1 - 0) * (.75 - 0) + 0 = 1.5

which changes the original value of .75 to 1.5, creating a lighter tone of hatching.

If .5 is entered for both oldmin and newmin, only values .5 and above are be remapped to

higher values while the rest remain unchanged.

Although the hatching parameters allow the hatching to be flexible for many types

of models, there are some types of models where hatching is not desired. In many artistic

drawings, such as pen-and-ink drawings, the brush or stroke is applied everywhere in the

38

www.manaraa.com

drawing. In an animated film, however, it is not always possible or even necessary to

apply the stroke to every object. For example, the eyes of characters are very important for

expressing feelings through the animation of a character and a stroking pattern could hinder

the communication of these expressions to the viewer. Water, rain, and hair are examples of

simulated effects that usually do not have a normal surface mesh on which hatching could

be placed.

Additional parameters allow stippling to be used instead of hatching on very small

or thin objects, such as grass and vines. With this option, objects that cannot recognizably

display hatching will still maintain a similar look and feel to surrounding objects that are

hatched. We use a quick and easy method to compute the stippling based on a method in

[AG00] to create voronoi noise. At normal scales, this effect has the look of random cells.

For the stippling, however, we scale the cells down to a small size to give the effect of lots

of small dots. Opacity levels are varied to give the appearance of changing tonal levels.

We refer the reader to [AG00] for an explanation of how the voronoi noise works, but we

include below an example of how we used it in our method:

voronoiNoise(point*pointScale + offset,

jitter, dist, featurePos)

stipple = smoothstep(smoothStart, smoothEnd, dist)

The voronoi noise function divides a surface into cells and computes a center point

for each cell. The center points are perturbed within their respective cells according to

the jitter input. The function takes a point as an input, and then computes the position of

the nearest feature and the distance to this feature from the center point. These values are

then set to the dist and f eaturePos variables, respectively. Our implementation allows the

user to scale and offset the input point, which serves to scale and randomize the look of

the resulting cells. Finally, we use a smoothstep to harden the edges of the resulting cells

to make them appear as dots instead of cells with gradients. In Fig. 2.20, the first image

39

www.manaraa.com

(a) (b)

Figure 2.20: Stippling applied to a sphere. (a) Normal look of hatching. (b) Stippling

turned on.

shows an example of the normal hatching applied to a sphere. The second image is the

same sphere with stippling applied, using the same settings and lighting conditions.

2.5.2 Controlling the Hatching

While the available parameters offer flexibility in designing the look of the hatching, it may

be challenging to find desirable settings. Sometimes many iterations of trying settings, ren-

dering, and changing settings are required before the desired settings are found. Following

this process for many shots of a film can be very time consuming. Consequently, a few

lighting controls have been created to help the lighter arrive at the desired settings more

quickly. The first two controls are rendering ”modes” that help the user visualize how the

lighting changes across an object’s surface. An additional control specifies whether a light

should contribute just to the hatching, just to the color of an object, or to both.

The first of the two render modes is the grey light mode. When this mode is turned

on, the object’s shader only outputs the value of the light contribution at every point on the

object. Since these values are used as inputs into the hatching shader to vary its parameters,

rendering these values gives insight into why the hatching changes as it does across the

object. Fig. 2.21 shows the default hatching image from above and how it looks with the

grey light mode turned on.

40

www.manaraa.com

(a) (b)

Figure 2.21: When the grey light mode of the hatching is turned on, only the value of the

lighting is output. (a) A normal image showing hatching on a shpere. (b) The image with

the grey light mode turned on.

Even while using the grey light mode, discerning the exact grey scale values can

still be challenging. For example, suppose the user wants to apply a cross hatch on portions

of an object that are below a particular lighting value threshold, lv. While rendering with

the grey light mode, several iterations of changing values and rendering are required to

interpret the correct threshold at which to set the cross hatch. The color ramp mode is an

additional rendering mode to help interpret lighting values across an object. When this

mode is turned on, the lighting contribution values are divided into 11 different regions.

Values ranging from 0 to .1 are in the first region, values from .1 to .2 are in the second

region, values from .2 to .3 are in the third region, and so on until values 1 and above are

in the final region. Each region is assigned a color, and this color is then rendered to the

screen. This mode results in bands of color on the models that give a better idea of the

breakdown of the lighting across the object. The lighting contribution can be divided into

even more regions of color for more precise feedback. Fig. 2.22 shows an example of the

color ramp and the ranges of values that each color represents.

We will give an example to show how the color ramp aids in setting and later ad-

justing the remapping sliders for the hatching. Suppose we start with a sphere that has

hatching as shown in Fig. 2.23 along with its respective color code. According to the light-

41

www.manaraa.com

(a)

(b)

Figure 2.22: (a) An example of how the color ramp mode looks when turned on for the

sphere in Fig. 2.21. (b) The values that correspond to each color in the color ramp mode.

ing direction given for the shot, the hatching in the darker regions of the sphere must be

darkened further while the hatching tone in the lighter regions must remain the same. By

looking at the color code of the sphere, we see that the hatching tone ranges from 1 in

the lightest area to about .2 in the darkest region. Therefore, we need to remap the lower

bound of the lighting range to a lower value. We use the first set of remapping values to

accomplish this. Since we want to remap the entire range of light to a greater range, we

input 0 for oldmin1 and 1 for oldmax1. To darken the hatching and increase the total range,

we need to decrease the lower bound while the upper bound remains the same. By using

the values -.73 and 1 for our newmin1 and newmax1, respectively, we get the results shown

in Fig. 2.24. As desired, the resulting sphere has a greater range of tones from light to dark

across its surface.

To continue with the example, suppose a change is needed so that the hatching tone

in the lower left corner of the sphere is lightened while the middle and lighter sections

remain the same. Since we only want to affect one region of the sphere and one remapping

42

www.manaraa.com

has already been used, we must use the second set of remapping sliders to make this change.

We refer to the color code in Fig. 2.24(b) and determine the range of values corresponding

to the area we want to change. In this case, we want to use 0 for oldmin2 and .1 for oldmax2

(the black region). Since we want everything from .1 and above to remain the same, we

need to use .1 for newmax2. To lighten the hatching, we then use .3 for newmin2. Fig. 2.25

shows the effect of this new change. Additional sets of remapping sliders may be added as

situations arise that require more specific control over adjusting the tone of the hatching.

It is important to note that when we say the interval changes from [0, .1] to [.3,

.1], we are changing the perceived density of the hatching only. The value 0 represents no

light or full hatching density, and 1 represents the maximum amount of light or the lowest

amount of hatching density. The amount of actual light that hits the object remains the

same. Where the hatching’s density used to change from 0 to .1, it’s density now changes

from .3 to .1 across the same spatial area.

(a) (b)

Figure 2.23: (a) A sphere with our starting settings for the hatching. (b) The same sphere

with color ramp mode turned on.

Other useful tools for adjusting the hatching are lights that only affect the hatching

or that only affect the color of an object. This is useful in cases in which the user determines

that adjusting the position or attribute of a light to change the hatching tone is needed

instead of adjusting the parameters of the hatching, but the color and intensity of the light

on the object is correct. Or the reverse may be true where the hatching on a particular

43

www.manaraa.com

(a) (b)

Figure 2.24: (a) By remapping the interval [0 1] on the sphere in Fig. 2.23 to [-.73 1],

we get a greater range of tones from light to dark. (b) By comparing the change between

spheres in color ramp mode, we can see more precisely how we increased the range of

values.

object is set, but the texture color of the object that is showing through the hatching needs

to be adjusted. To accomplish this, a light category option on the light shader specifies

whether the light contributes only to the hatching of an object, only to its color, or both.

The illumination models used in the surface shaders read in the category and omit the

contribution of the lights to the hatching or color of the object accordingly. Therefore, if a

color-only light is added to brighten the color of the object, it will not affect the hatching

in any way. In some situations these categories provide a quick fix to an otherwise difficult

lighting situation.

2.6 Results

As an NPR style for an animated film, we tested our method by applying it to a student

short film called Noggin. The film consisted of 50 shots, totaling about 4 minutes. The

film shows how our method adds tone and contrast to a film, giving it a unique hand-

drawn feeling. Below we show different groups of images and their descriptions that show

different ways hatching was used on the film.

44

www.manaraa.com

(a) (b)

Figure 2.25: Remapping the second set of sliders from the interval [0, .1] to [.3, .1]. (a)

The normal hatching that shows the result of this change. Notice how only the hatching at

the bottom of the sphere changed, becoming lighter. (b) The sphere in (a) with the color

ramp mode turned on.

2.6.1 Defining the Hatching Style

We experimented with various styles of hatching to determine which styles of hatching

would be practical and usable with our system.

Our goal is a style that suggests a hand drawn look by using strokes to add tonal

differences across objects and simulate 3D shading and lighting. In addition, we wanted

to create hatching that had no distracting artifacts, especially when animated. Below are

some potential problems we faced with our stroking style and our solutions to preventing

or fixing the problems.

We attempted a style similar to the wood-block shader from the work of Apodaca

that used long, continuous hatches. However, instead of increasing the width of hatches

in areas of darker tones, we increased the frequency of the hatching. Fig. 2.26 shows an

example of this. Although the tone of the hatching varied according to the values of light,

the changes were not sufficient enough to create significant changes in the overall image.

The hatches look more like stripes that are part of the underlying textures of the objects

than a stroking technique that compliments the tonal changes in the images.

45

www.manaraa.com

(a)

(b)

Figure 2.26: Two examples of images showing an early form of hatching similar to the

wood block shader from [AG00]. The hatching does not add enough tonal contrast to the

images; as a result, it looks more like stripes on the objects, rather than a part of their

lighting.

One approach to fixing this problem was to increase the overall frequencies of the

strokes and add an additional layer of cross hatching in the darkest tonal regions. Fig. 2.27

shows the result of this change. Moire patterns and other aliasing artifacts, such as dot

crawling and shimmering, are problematic when creating patterns with many small fea-

tures. These artifacts are especially distracting in animations. To help prevent aliasing,

we used smaller overall frequencies, as well as anti-aliasing noise functions. These noise

46

www.manaraa.com

Figure 2.27: Too many small hatching strokes in one area can cause distracting moire

patterns.

Figure 2.28: Although there is a nice change in tonal qualities in going from the light to

the dark areas of this image, the hatching would be too overbearing on objects with added

texture and lighting.

functions, described in [AG00], remap the input frequencies in order to prevent too low of

sampling rates.

Another style we tried used greater contrast in the tones of the strokes, approaching

near solid black in the darkest tonal regions, as shown in (Fig. 2.28). This style would

only be desired for applications that are intended to be monochromatic in nature. For our

method, therefore, the hatching is too overbearing and hides too much of the fine gradations

47

www.manaraa.com

in color that exist in the underlying textures and lighting, causing the 3D qualities of the

image to be lost.

2.6.2 Hatching with Different Lighting Schemes

A film’s style must be consistent throughout all of its shots. Our method must therefore be

flexible enough for any lighting scheme throughout the film. In Fig. 2.29, we show images

from five different shots of Noggin that each have a unique lighting scheme. Whether the

shots are sunny, dark, foggy, or overcast, the hatching tones properly fit the surrounding

lighting.

2.6.3 Hatching Defining Shadows

The images in Fig. 2.30 show examples of hatching in shadow regions. One of the most

important criteria for any NPR method to be successfully used in animation is temporal

coherence. Styles must be consistent and coherent across consecutive frames of animation

without displaying distracting artifacts. In these examples, the hatching strokes gradually

fade in and out in a smooth manner as the shadows pass over objects.

2.6.4 Hatching Integration

In the section on Artistic Control we discussed how we did not force our hatching technique

on every type of object. The images in Figures 2.31 through 2.33 show cases in which the

hatching was eliminated or changed. Having the control to make such changes is vital for

making our method useful for other films, in that it shows that the effect will support and

not hinder the final product.

The hatching adds certain characteristics to the images of a film. In Figure 2.34(a)

we show an image before hatching has been applied. In Figure 2.34(b) through (d), we

show three examples of the same image with different hatching settings applied to each one.

The hatching adds contrast to the original image that reinforces the lighting by making its

48

www.manaraa.com

(a) (b)

(c) (d)

(e)

Figure 2.29: Hatching with Different Lighting Schemes

49

www.manaraa.com

(a)

(b)

(c)

Figure 2.30: Hatching Defining Shadows

50

www.manaraa.com

(a)

(b)

Figure 2.31: Hatching is used all throughout the film, even in shots with various effects,

like rain, fire, and mist. Rather than try to enforce the hatching look in these effects, we

provided the functionality to turn off the hatching on certain objects or parts of objects.

Although doing so compromises the idea of consistency in using hatching on every object,

this allows the hatching to be flexible to fit the needs of whatever film it is used on.

51

www.manaraa.com

(a)

(b)

Figure 2.32: In (a), the hatching on objects in the background is faded along with the

normal color to help convey depth in the image. In normal pen-and-ink hatching images,

this would never be found. Due to our unique style of blending color lighting with hatching,

this becomes necessary to help the look of the overall image. When the camera moves

forward in the shot, as in (b), we see how the hatching unfades to stay consistent with the

normal color of the objects.

52

www.manaraa.com

apparent tone clearer. Also, the image without hatching contains smooth objects and little

variation in color, which give it a definite computer generated look. Although the hatched

images contain the same objects, the hatching in these images help them contain more

variation and appear more hand-made.

2.6.5 Future Work

There are several ways that our method could be extended for future work. The stippling

technique was used as an alternative to the hatching that had a similar effect but was better

suited to very thin and small objects. The stippling would be improved by creating a more

flexible technique. Currently the stippling is a combination of voronoi noise and an opacity

mapping based on lighting. A better technique, however, would be to create circle patterns

and then control the apparent density of the circles consistently among all objects, similar

to how the hatching stroke pattern is created and its density is controlled. Different types

of variation could be used on the circular patterns to denote different tonal levels. Like the

hatching, this would make the stippling a more useful technique.

Figure 2.33: A light stipple is used on the grass instead of hatching. Trying to coordinate

the hatches among the various blades of grass and make it work with moving cameras

would have been extremely difficult and not very useful in the end. Allowing stippling for

such small objects helped keep the look of the objects consistent in feel with the hatching

on other objects without requiring a new and separate hatching technique.

53

www.manaraa.com

(a)

(b)

(c)

(d)

Figure 2.34: (a) A scene with no hatching. (b) A scene with hatching applied. (c) As

compared with (b), the hatching in this image is straighter and thinner. (d) The hatching in

this image has a high frequency and a high amount of contrast.

54

www.manaraa.com

Another area of future work could be to investigate other types of NPR techiques

that can be used in 3D animated films. Many different styles have been used to create

2D animations. Determining how to apply these styles to 3D animations without making

them look too flat and 2D would contribute much in the way of creative stylizations of

film. NPR methods that are more pattern-based in nature could extend techniques used in

our hatching method, such as was previously discussed on extending the controlled-density

technique to stippling patterns. Controls such as the grey light and color ramp modes could

also be utilized in other contexts to aid in visualizing changes in lighting. Our hope is that

our contribution will serve as more than a technique to create hatching, but will help in

opening up other avenues in the art of creative film making.

55

www.manaraa.com

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.35: Additional images from various shots in Noggin that show the flexibility in

the use of the hatching throughout the film.

56

www.manaraa.com

Chapter 3

Conclusion

In this paper we have presented a new NPR method to stylize the look of a 3D ani-

mated film. Our method is unique in that it adds a pen-and-ink style of hatching to the film

that gives it a hand-drawn feel while preserving its colors from shading and lighting. The

hatches add an additional level of interest to the film by adding more contrast in the darker

regions and by producing patterns that change smoothly with changes in lighting. The op-

tions and tools provided to fine-tune the hatching allow interesting and natural patterns to

be created across multiple shots in a reasonable amount of time.

The most important aspects of our work are the technical solutions it provides to

problems that are highly creative in nature. To define exactly what it means to make a

film look interesting is difficult. Many NPR methods are very successful in providing

solutions to mimicking artistic styles that accurately portray the style and that run faster and

more efficiently than previous methods. However, most do not give the proper emphasis

to addressing the problems that limit the use of these methods in real-world applications.

Instead of only using simple objects with basic camera moves or other simple animations

in our test cases, we show the use of our method on an actual 3D film with multiple shots

and complex models. Also, we do not limit our method to specific types of models or

special case scenarios, but provide functionality so that it may be used to enhance the look

of any film no matter what models it includes or how complex they are. The art of film-

making contains its own set of unique challenges that must be specifically addressed in

order to allow new techniques and styles to be practical. The work presented in this thesis

57

www.manaraa.com

contributes to this field by providing styles for animated films that enhance their visual

impact in new ways.

58

www.manaraa.com

Bibliography

[AG00] Anthony Apodaca and Larry Gritz. Advanced renderman: Creating cgi for

motion pictures. pages 457–468. Morgan Kuafmanm, 2000.

[ARS79] Arthur Appel, F. James Rohlf, and Arthur J. Stein. The haloed line effect for

hidden line elimination. In SIGGRAPH ’79: Proceedings of the 6th annual

conference on Computer graphics and interactive techniques, pages 151–157,

New York, NY, USA, 1979. ACM Press.

[BW03a] Kevin Buchin and Maike Walther. Hatching, stroke styles, and pointillism.

In ShaderX2 - Shader Tips and Tricks, pages 340–347. Wordware Publishing,

Inc., 2003.

[BW03b] Kevin Buchin and Maike Walther. Real-time per-pixel rendering with stroke

textures. In SCCG ’03: Proceedings of the 19th spring conference on Com-

puter graphics, pages 125–129, New York, NY, USA, 2003. ACM Press.

[BWL] William Baxter, Jeremy Wendt, and Ming C. Lin. IMPaSTo: A realistic, inter-

active model for paint. In Proceedings of NPAR 2004, The 3rd International

Symposium on Non-Photorealistic Animation and Rendering.

[CRH05] John P. Collomosse, David Rowntree, and Peter M. Hall. Stroke surfaces:

Temporally coherent artistic animations from video. IEEE Transactions on

Visualization and Computer Graphics, 11(5):540–549, 2005.

[CSUN05] Youngha Chang, Suguru Saito, Keiji Uchikawa, and Masayuki Nakajima.

Example-based color stylization of images. ACM Trans. Appl. Percept.,

2(3):322–345, 2005.

[Cur98] Cassidy J. Curtis. Loose and sketchy animation. In SIGGRAPH ’98: ACM

SIGGRAPH 98 Electronic art and animation catalog, page 145, New York,

NY, USA, 1998. ACM Press.

59

www.manaraa.com

[DC90] Debra Dooley and Michael F. Cohen. Automatic illustration of 3d geometric

models: lines. In SI3D ’90: Proceedings of the 1990 symposium on Interactive

3D graphics, pages 77–82, New York, NY, USA, 1990. ACM Press.

[DFR04] Doug DeCarlo, Adam Finkelstein, and Szymon Rusinkiewicz. Interactive ren-

dering of suggestive contours with temporal coherence. In NPAR ’04: Pro-

ceedings of the 3rd international symposium on Non-photorealistic animation

and rendering, pages 15–145, New York, NY, USA, 2004. ACM Press.

[DS00] Oliver Deussen and Thomas Strothotte. Computer-generated pen-and-ink il-

lustration of trees. In SIGGRAPH ’00: Proceedings of the 27th annual con-

ference on Computer graphics and interactive techniques, pages 13–18, New

York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.

[EMP+03] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steven

Worley. Texturing and modeling: A procedural approach. pages 157–176.

Morgan Kaufmann Publishers, 2003.

[FMS04] Bert Freudenberg, Maic Masuch, and Thomas Strothotte. Real-Time Halfton-

ing: Fast and Simple Stylized Shading. In Andrew Kirmse, editor, Game Pro-

gramming Gems 4, pages 443–440. Charles River Media, 2004.

[Fre01] B. Freudenberg. Real-time stroke textures. In SIGGRAPH 2001 Conference

Abstracts and Applications, page 252. ACM Press, 2001.

[FV03] Jennifer Fung and Oleg Veryovka. Pen-and-ink textures for real-time render-

ing. In Graphics Interface. A K Peters, LTD., June 2003.

[GG01] Bruce Gooch and Amy Gooch. In Non-photorealistic Rendering. A. K. Peters,

Ltd., 2001.

[Her98] Aaron Hertzmann. Painterly rendering with curved brush strokes of multi-

ple sizes. In SIGGRAPH ’98: Proceedings of the 25th annual conference on

Computer graphics and interactive techniques, pages 453–460, New York, NY,

USA, 1998. ACM Press.

[HHD04] Michael Haller, Christian Hanl, and Jeremiah Diephuis. Non-photorealistic

rendering techniques for motion in computer games. Comput. Entertain.,

2(4):11–11, 2004.

60

www.manaraa.com

[HZ00] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. In SIG-

GRAPH ’00: Proceedings of the 27th annual conference on Computer graph-

ics and interactive techniques, pages 517–526, New York, NY, USA, 2000.

ACM Press/Addison-Wesley Publishing Co.

[LD04] Thomas Luft and Oliver Deussen. Non-Photorealistic Real-Time Rendering of

Characteristic Faces. In Proceedings of Pacific Graphics 2004, pages 339–347,

2004.

[LMHB00] A. Lake, C. Marshall, M. Harris, and M. Blackstein. Stylized rendering tech-

niques for scalable real-time 3d animation, 2000.

[May96] Stephen F. May. Rmannotes. In http://accad.osu.edu/∼smay/RManNotes/.

Stephen F. May, 1996.

[Mei96] Barbara J. Meier. Painterly rendering for animation. In SIGGRAPH ’96: Pro-

ceedings of the 23rd annual conference on Computer graphics and interactive

techniques, pages 477–484, New York, NY, USA, 1996. ACM Press.

[MKT+97] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D. Bour-

dev, Daniel Goldstein, and John F. Hughes. Real-time nonphotorealistic ren-

dering. Computer Graphics, 31(Annual Conference Series):415–420, 1997.

[ND04] Marc Nienhaus and Jrgen Dllner. Sketchy drawings. In AFRIGRAPH ’04:

Proceedings of the 3rd international conference on Computer graphics, virtual

reality, visualisation and interaction in Africa, pages 73–81, New York, NY,

USA, 2004. ACM Press.

[PHWF01] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. Real-time

hatching. In Eugene Fiume, editor, SIGGRAPH 2001, Computer Graphics

Proceedings, pages 579–584, 2001.

[SABS94] Michael P. Salisbury, Sean E. Anderson, Ronen Barzel, and David H. Salesin.

Interactive pen-and-ink illustration. In SIGGRAPH ’94: Proceedings of the

21st annual conference on Computer graphics and interactive techniques,

pages 101–108, New York, NY, USA, 1994. ACM Press.

[SALS96] Mike Salisbury, Corin Anderson, Dani Lischinski, and David H. Salesin.

Scale-dependent reproduction of pen-and-ink illustrations. In Computer

Graphics, Proceedings of ACM SIGGRAPH 1996, pages 461–468, 1996.

61

www.manaraa.com

[SLK05] Kaleigh Smith, Yunjun Liu, and Allison Klein. Animosaics. In SCA ’05: Pro-

ceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer

animation, pages 201–208, New York, NY, USA, 2005. ACM Press.

[VB99] Oleg Veryovka and John W. Buchanan. Comprehensive Halftoning of 3D

Scenes. In Pere Brunet and Roberto Scopigno, editors, Proceedings of Eu-

roGraphics’99 (Milano, Italy, sep 1999), volume 18, pages 13–22, Oxford,

September 1999. NCC Blackwell Ltd.

[Ver02] O. Veryovka. Animation with threshold textures. In Graphics Interface 2002,

2002.

[WB03] Holger Winnemoller and Shaun Bangay. Rendering optimisations for stylised

sketching. In AFRIGRAPH ’03: Proceedings of the 2nd international confer-

ence on Computer graphics, virtual Reality, visualisation and interaction in

Africa, pages 117–122, New York, NY, USA, 2003. ACM Press.

[WM04] Brett Wilson and Kwan-Liu Ma. Rendering complexity in computer-generated

pen-and-ink illustrations. In NPAR ’04: Proceedings of the 3rd international

symposium on Non-photorealistic animation and rendering, pages 129–137,

New York, NY, USA, 2004. ACM Press.

[WS94] Georges Winkenbach and David H. Salesin. Computer-generated pen-and-ink

illustration. Computer Graphics, 28(Annual Conference Series):91–100, 1994.

[WS96] Georges Winkenbach and David H. Salesin. Rendering parametric surfaces

in pen and ink. Computer Graphics, 30(Annual Conference Series):469–476,

1996.

62

